Ολοκληρώθηκε

AWS S3 text files to Relational Database

Αυτό το πρότζεκτ ολοκληρώθηκε επιτυχώς από τον jksnetwork για $250 AUD σε 3 μέρες.

Λάβετε δωρεάν αναφορές για ένα πρότζεκτ σαν αυτό
Εργασία Εργοδότη
Προϋπολογισμός Εργασίας
$30 - $250 AUD
Ολοκληρώθηκε σε
3 ημέρες
Σύνολο Προσφορών
21
Περιγραφή Εργασίας

A little background - I am using AWS to manage a mountain bike timing system. Competitors tag on and off a number of different stages and the tag off time minus the tag on time is the stage racetime and the lowest cumulative time over all stages wins.

Out on the racecourse, I am using Raspberry Pi's with RFID readers which collect and store data in text files which automatically upload to the AWS S3 bucket. I currently have two files in there: Stage 1 [url removed, login to view] and Stage 1 Finish.txt.

I need to get these files into a database to join with a competitor registration database so I can ultimately compute racetimes in AWS, extract some analytics and allow competitors to search and compare times using their surname or racing number to find their race times.

In short, I need help converting these text files into a relational database and this process is automated so that when new items are appended to the text files that they update the database.

I think a Data Pipeline is the way to go but happy to listen to alternative recommendations to achieve my ultimate goals as described above.

The text file item/row is semi-colon delimited as follows:

[url removed, login to view];1s;2016/12/30;13:56:[url removed, login to view];00235689

Meaning log information (not needed), 1s (Stage 1 Start), Date, Time to milliseconds and finally the RFID code.

Any help with the Data Pipeline (or another alternative) is required as soon as possible.

Thanks

Steve

Ολοκληρώθηκε από:

Ψάχνετε τρόπους για να κερδίσετε μερικά χρήματα;

  • Ορίστε τον προϋπολογισμό σας και το χρονικό πλαίσιο
  • Περιγράψτε την πρότασή σας
  • Πληρωθείτε για τη δουλειά σας

Προσλάβετε Freelancers που ήδη έχουν υποβάλει προσφορά σε αυτή την εργασία

    • Forbes
    • The New York Times
    • Time
    • Wall Street Journal
    • Times Online